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The Effects of Operator Splitting in Computing Curved Shocks

Grant O. Cook, Jr.
Lawrence Livermae National Laboratory

Dimensionally split numerical methodave been in common use in computational physics for
many years Thisisdueto the neel for speedthe formd convergene of Strarg splittings and the
accessibility of shock capturing techniques in one dimensiowe¥ér, the lack of genuinely
unsplit multidimensional shock capturing methods has mad#idudli to access justdw large

the errors are in a dimensionally split approach. This applies in spite of splitting corrections that
have been used to obtain formally “unsplit” methods.eivtlass of methods that are genuinely
unsplit rave recently beenadeloped. These are the so-called “Cowaton Element and Solu-
tion Element” (CE/SE) methods. Using these high acyureethods, we siw that cawerging

flows and the subsequesxipanding fbws are accurately captured by CE/SE methods. Contrari-
wise, it will be slown that dimensionally-split Godoa and unsplit vave propagation methods
distort the fbw for the same cases, sometimes senoyisl)

Keywords curved shocks, CE/SE, operator splitting, Goalynvave propagation

Introduction

Numerous attemptsalre been madever the long history of hydrodynamics to accurately
simulate shock propagation when the shock is not aligned with the mesh. It is widely held that
good results are obtained in the non-aligned case by using methods that are based upon using
Strang-tye operato splitting (Khan and Liu, 1998 LeVeque 1997 Saltzman1994) With some
one-dimensionashock-capturig methodsit has been argued tha it is possibe to perfom fixups
to the tranverse componenof the flow by estimatirg the errar incurred with the operato splitting
(Dai and Woodward 1997 LeVeque 1997) While we have found that thes conclusios are valid
if the shocks are weak enough and tbes $mooth enough, weate also found that for strong
shocks and lge curature situations, operatsplit techniques incur ftge errors.

In this pape we demonstrate that at least one uniqgue method doesfieottkase deficien-
cies. This method is the Spatene Conseration Element and Solution Element (CE/SE)
method due to Chang (1995). Among itsnatrengths is that it is genuinely unsplit from the
start. Itis highly accurate in 2D and 3D, as well as 1D.

In addition to the CE/SE method there is at least one other truly unsplit shock-capturing for-
malism. It is the Riemanmvariant Manifold theoryRapakxandris et al., 1997) which can be
used with avariety of one-dimensional methods. This approach will not be considered further
here.

Some of the unique aspects of the CE/SE method are:
* No directional splitting is empyed in 2D and 3D.



NECDC October 1998

* It solves the inggral form of consefation kws in the space-time domain.
* It conseves space-time flux locally and glohall

* A leap-frog time adance mechanism is used. Because of tla, ififormation on inter-
faces separating consation elements can l@waluated without interpolation @xtrapo-
lation.

* In addition to the tiw variables, the time demative and sveral spatial devatives of the
flow variables are treatal as dependetvariables This mears tha the flow structue is not
calculated through a reconstruction procedure as in Gvdghemes.

*  Whendissipation isaddeal to suppreswiggles it is alinear addition to the non-dissipatve
spatial deiwatives of the fbw variables. Dissipation is not directly added to toesfbari-
ables.

Notabl, shok captueisachieved without acharacterist decompositia or the neal to solve
a Riemann problem.

We will begin by sketchirg the essentiad of the CE/SE method Then theted problensrepre-
senting coverging and averging 2D shocks are introduced. All of the problems were run on uni-
form squae Cartesia grids The resuls obtainal with the CE/SE methal are then compare with
those found from two (dimensionally-split) Godnrmethods.

The CE/SE Method

Chang and hisaworkers lave stown that the propagation of signals in hyperbolic coreser
tion laws implies that it is beneficial to formulate the solution process as a leapfrog method
(Chang 1995) Itiseay to sele¢ consevation elemensto allow aleapfray update Ead conser-
vation element (CE) is &gion in space-timever which the irggral form of each consedtion
law is valid. Conseration elements are chosen to fill in the space-time problem domain. While
many choices are possible, we choose rectangular kaoltknes in space-time for the conser
tion elements in the simulation code used here.

Next, the solution elements (SE) are selected as the domangvhichvalues of the depen-
dentvariables are needed inégtals arising from the iegral form of the consgation lws. In
these domairs a conveniert representatiofor the dependetwvariablesis selectedUsually, thisis
aTaylor series representation thaexpanded about a center point in the solution elenfrent.
instance, in two dimensions on a rectangular grid that lines up with the coordiesiteva pick
the following representation for a dependeatiabk g.

g0 Yot % vy ) = o+ %?Hjﬂ—t”) (1)

2 n
9gd' 9gd' %9 a
"'mq_(x_xi)"'[b—yqj(y—)’j)"' Xay%,j(x_xi)(y—yj')

J

Note tha n denotes a timeabel, i denotes an irek in the x direction, ad j an indx in they
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direction. These indices specify the center point of the solution element that is the domain of
validity for equation 1.

Asshown in Figure 1, typically two solution elemens are involved in the integration of acon-
sewrvation law over a CE. Thexpansion points for th&aylor series in each solution element are
denoted by théullet symbol. One of these solution element®ives krown quantities from the
past timedvel. The other solution element is that for the wwkm adranced-timevalues of the
codficients in the correspondiniaylor series.

(%, ¥jr t)

[ p
. y
_ax, 4y Ab <

X=ZY-5 v =3 X

Figure 1. A typical conseation element with twdaylor
seriesexpansion points associated with solution elements
that over the surfaces analume of the conseation ele-
ment.

n
In the Taylor series expansion, %?5 _isdetermine from the partid differentid equatia for
]

n n 2 |:|n
g. The remainirg four unkmvvns,ginj, %5 o g_?/% ,and g%y% are found by solving the
' v ) v ) , J

four equations obtained by egirating the conseation kw for g over the four indvidual conser-

vation elements surrounding the update pomtyj, tn) . Figure 2 sbws the four conseation

elemenstha surrourd agiven updag point in auniform rectangulaCartesia coordinaé system.
The CE labelled I is the same CE illustrated in Figure 1. Keittk also makes it a little clearer
how one leapfrog time step works. It also naates the fact that when theegtals for two adja-
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cent CEs are added togethie contibution on the commoface is zero.

Note that no dissipation isvolved in obtaining these ctieients in theTaylor series. Of
course, in order to pvent ringing at shock fronts, dissipation must be added to the non-dissipa-
tive solution Originally, Charg usel atwo parametedissipation modd for dampirg thisringing.

By treating the CE of dissipation model as the union of the CEs surrounding an update point

(X;, Y t"), a method for conseatively modifying the davative codficients was obtained.
Recenty, Chang refined this technique with a three parameter dissipation model (Chang, 1998).

(Xi’yjitn)
t
y
X
A Ay .0 At

_Ax,, Ay .n At : /

Yi—=t AX A At
272 2 (xi+—2—,yj—-é¥,t“——2-)

Figure 2. A typicd arrangemeinof consevation elemens surroundirg an update
point in leapfrog position. The solution elem&aylor serieexpansion point at the
old time kvel (n-1/2) for CE IV is not visible.

The basic idea behind thiswm dissipation model is to separately damp weakes and
strorg shocks Thisisindicated in equatian 2, wheree isthe parametefor dampirg weak waves
andp is the parameter for damping shocks.

diss non-diss non-dis

Oy = Oy oo+ 2e(gy — Oy +B(gy - 9,) . ()

wheregf( is a central dference approximation tg, , g‘)'(v is a nonlinear weighteal’/erage of one-
sided approximations tg, , and
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gnon -diss _ j (3)
X 0Xx
CE

n

is the solution obtained fcg%](% ~ when solving the four equations obtained fronegrating
N

over the CEs I, Il, Ill, and IV in Figure 2.

In order to computgf( and g‘)’(v, it is first necessary to obtain someauced-time estimates
from the pevious time ével data.To accomplish this, th€aylor series is used:

1

1
n__
n —q 2 A_@QD
9.1 11791 117 2 0Bt 0] el (4)
2772 2772 2

g, is found from thesealues as fotiws:

[l
+
2%I+—J+— g|+:—L'——D 2%l——1+— i—},j—1D
o = — (5)
X AX
Coupllngg 1 With the krown value at the update p0|rg, i four planes can be con-
—2 15

structedonein eat of the +x and+y directions For the it such plane the x and y delivatives of

g can be computed. Then,gf((i) and gy(i) are the devatives on the'l plane, define

.2 W
6, = J(6,") +(a,"). ©)
With this quantiy, the nonlinear weightealerage ofg, can be defined as:
g = (828 0,)%a" + (0,040, o + (8,0,0,)* 0" +(6,6,0,) g -
X

(929394) +(919394) +(919294) +(919293)

with a usually choseéto be 1.0 or 2.0. g‘)',v iscomputel analogoust. Thislimiter isthe generaliza-

tion for aregular rectangulagrid of Changs two-dimensionklimiter on aregular triangula grid
(Chang et al., 1995).

It is also important to note thgﬁV is computed in a way that introduces no directional bias.

This generalized multidimensional limiter preses the genuinely unsplit nature of the CE/SE
method Thus unlike technique base& upan Godurov or Riemam solvers there are no fixups or
adjustments required to accommodate coupling betwdkmatit directions.

-5-
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It is most common to use an artificial viscosity agag of adding dissipation to a physical
model. Since an artificial viscosity is added to the physical pressure, it is therefore the case that
linear changes in the artificial viscosity introduce nonlinear changes in the solution. By contrast,
the CE/SE dissipation modé introduces changsin the deiivative codficients tha are linear in the
amount of dissipation added. Furthermore, the dissipation is added only after the noniaissipat
solution is computed. Chang found that the addition of this dissipation breaks the space-time
invariance properties that a non-dissypaiCE/SE method possesses (Chang, 1995).

The overal resut istha the CE/SE modd provides betta contrd of the dissipatian than meth-
ods that introduce dissipation inside of a nonlinear opertihe CE/SE dissipation model also
yields more readily to mathematical analysis.

Applying the CE/SE Method to theTwo-Dimensional Euler Equations

For the two dimensional Euler equations in Cartesian coordinates, weetlselequations in
internal enegy form. That is, the dependestriables are chosen to (@ pv,, pvy,eim) . We
choo®to denoethe x and y componerg of the momentum by p, and Py; thatis, p, = pv, and
p, = pv, respedtely. Also, the symbloP denotes the pressure, and should not be confused
with the components of the momentuercta.

We illustrate the application of the CE/SE methal to this situatian by examining the conseva-
tion law for Py - The first step is to write the egral form of the consgation kw for Py begin-
ning with equation 8:

2
&(DD

X: +A_X y+A_y w
TS Vit Py, o PxPyo, 0 Dlj:) T -
I ij It“_%% +6xD ) or oy[ + P M xdydt = 0 (8)

Because of the use of congaion form, the three terms can besgrated once as eWwn in
expressions 9, 10, and 11. Note that the term in each equation that is not at the update point uses

old time kvel data (at = t”—%t).

X-+Q( Y +A_y
1 ] _

Ix ? ij 2 ((py)n_(py)n 1/2)dxdy (9)

Ay

y'+— n |:|

Iyl- 2Itn At %Px_pya _%Pxpya [dlydt (10)
: '-S0 P vy PO

Xi"'A_X n 2 |:| 2|:| D

Ix 2 Itn At %) + %( -[P+ %(D %th (11)

2 j+12 U Hio
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Now define the two flux terms in equation 8 as:

n n 2.Nn
Fn _ (px)ilj(py)i,j Gn — Pn +(px)i,j
I n i, ] i, j n

Pi, j Pi,j

(12)

TheTaylor series fop, can be used tevaluate the iregrals inexpression 9. In order to

obtain comparable results in theamals inexpressions 10 and 11, one choice is to linearize the
flux terms as in equations 13 and 14.

F F
Fontigom =+ B @0+ v-y) (13)
. G G
G tijin = 6+ 5 (-t + 2 5 (x-%) (14)
. OF 0G
In evaluatlnga an dat the time davatives of the dependewariables are encountered.

n
Jug as %) 0 in the Taylor seriesfor Py isreplacel by its value from the differentid equation
j

that defines it, each time deative m%z andgi3

equation definition. This process is repeated for the cestsen inegralsover CE, CE”, and

is replaced by the correspondinffetiential

Py 9P 9°p, 0
CE,,. Therely, we obtai four equatiors to solve for (py)I i g—yg g—yyg ,and xay .

Because the grid is uniform in this case, if the results efliatingover the four CEs are added
togethe, we obtain amxpression that depends only uppy, and not ony of its dervatives.
Consequenyl the dependemnariables can be partially updated on this grid without the need for

solving a system of equations. Wherr % it is not necessary to sel for the non-dissipate

dernvative codficients However, thisisalarge amourt of dissipation so, for highe accuray, it is
recommended to sae three of thepy equations for the deative codficients. When irdgrating

internal enggy equatiorover a CE, nonlinear terms are found due to the crosstiees of
kinetic enegy terms Hence in this case anonlinea solver is requiral to solve the full system of
equationsHappily, the nonlineariy isweak so functiond iteration works well given agoad start-
ing guess.

It is of interest to compare actual implementations of the CE/SE method and aoGodun

method. Our CE/SE implementation on rectangular grids sw'Flth1

5 andp = 1 is faster per
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major time step (two leapfrog steps in a major time step) than the Gosloiner. Also, we
obseved that the CE/SE implementation is able to get reliable solutiongat tane steps than
the Godunv method. These obsations lave been made in a framork where both the CE/SE
methal and a Godurov methal are implementd in the sare simulation code and in away so that
both usesxactly the same underlying simulation code services (such as initialization, memory
management, graphics, etc.). Conseqyetité algorithms themseds can be directly compared
for speed, accucg, code size, etc. Since the CE/SE metmwdlves solving for the éw vari-
ables and their gradients, it is ndveus how this can be made to be moféi@ent than an opti-
mized Godunv solver. This achevement was made possible through the use\adraztd
symbolic computing tools for tHaulk of the codingyery sophisticated optimization, anaer
adjustments to the multidimensional limiters.

When reducing the amount of dissipation used by CE/SE, a nonlineer isolequired, and
the CE/SE method thenogls down to about half the speed of the Godusoler. Considering
the gains in accucg, especially for cuwred features, this is an easily justified cost.

Test Roblems

We illustrate curved shok issues with converging cylindrical shocks In orde to elucidae the
problens tha arise due to split versts unsplt methods we pick modéd problens in cylindrical

coordinats that depeml only upon the radid coordinate The simulatian is then performel on a
uniform two-dimensionhrectangula Cartesia grid tha lies in the (p,0) cylindrical coordinate
plane. The size of the grid is 128 by 128.

In the two problens considerd here the initial conditiorsinclude features tha do not conform to
the geomety of the grid. Hence stairsteppig errors or med imprinting occuss due to the initial
conditions. Nonetheless, as will be seen from the CE/SE solutions, these errors are small.

The first Godurov solver usal in thes simulatiors is bas& upoan the Direct Eulerian MUSCL

schemé' It employs astandad ADI-type approab for solving the multidimension&Euler equa-
tions tha is, after solving a sequene of Riemam problens in one direction it perforns trans-
verse fixups in the directiors normd to the sweep In orde to renove sone bias the orde of
directiond sweep is reversal from one-hal time step to the next. Since this solver is the
Godurov metha implementd in the Odys®y code it will be identified as the Odys®y Godurov
solver in the folbwing discussion.

The secom Godurov solver employel isonein the CLAWPACK packag as embeddd in AMR-

CLAW.” Of tho= available we selecte the defaut Godurov technique employel in the Euler
exampk section of CLAWPACK. It is a wave propagatio metha with an ‘unsplit’ charactein
the seng tha it approximate the terms that are missirg in the operato splitting of the full (non-
linear) Euler equations.

The CE/SE solver usd in the simulatiors used the foll owing parametevalues for the dissipation
model:¢ = 0.25 and3 = 0.12, with a = 1.0 inthefirst problen anda = 2.0 in the second
problem. Six digits of accuecg in the nonlinear sokr was requested in each case.
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Figure 3. Initial conditiors for the three region problem The inner very low
densiy region has alow pressurgthe low densiy outea region has ahigh
pressure; and the high density middigion has an intermediate pressure.

All regions in these problems are made tiy-daw gases withy = g
The first problem is athree region problem whete the inner region is very low densit, low pres-
sure the middle region is highe densiy and mediun pressurewhile the oute region islow den-
sity and high pressure Ead region is boundel by cylindrical surfaces The initial density
contous are shown in Figure 3. Note from the Godurov solutiors in Figures 4 ard 5 tha just
before the main shodk reachs the lower left corneg of the plot, the Odys®y Godurov resut is
showing hints of flattenirg in the solution alorg the diagoné of the grid (where x=y, x and y being
the two Cartesia coordinates))in the CLAWPACK solution the flattenirg isvery pronouncedA
shot while after the main shok boun@ is see in Figures 6 and 7. A significart deterioratiaon of
both Godurov solutiors nea the origin has clearly occurred In fact, in addition to flattenirg of
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0.166

"

Figure 4. Problen 1 just before amaja shodk reachs the origin. The top plot shows the
CLAWPACK result the lower left plot shows the correspondig Odys®y Godurov result and

the lower right plot slows the CE/SE result using = 1.0.
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{t 3.09e 02.x.y} >{rho}

Figure 5. Close in viewsin problem 2 just before amaja shodk reaches the origin. The top plot
shows the Odys®y Godurov result while the bottan plot shows the CE/SE resut using
a=10.

-11-
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0.491

Figure 6. Problem 1 after the shocls have reboundedThe top plot shows the CLAWPACK
result the lower left plot shows the correspondig Odys®y Godurov result ard the lower

right plot stows the CE/SE result using = 1.0.
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{t=5 40e 02 x vy} >{rho}

T x

0. AL UL K Vi~ 11101

Figure 7. Close in views in problam 2 after the shok has bounced The top plot shows the
Odys®y Godurov result, while the bottom plot elvs the CE/SE result usirgg = 1.0.

-13-
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Figure 8. Differert resolution closein views of problem 1 after the shodk has bouncedOdys®y
Godurov was usel in eat case The top plot has resolution 128x128 the lower left plot has
resolution 256x256, and thewer right plot has resolution 512x512.

14-
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Figure 9. Initial conditiors for the two region problem The inner
low densiy region has alow pressurearnd the mediun density
outer egion has an intermediate pressure.

the shocksthere appeas to be jetting occurrirg on the coordinagé axes nea the origin. In the case
of CE/SE ther is slight squarirg of the contous out a shot distan@ from the origin. Also, a
minor manifestatio of the mesh imprinting of the initial conditiorsis visible. But overall, the CE/
SE solution isxcellent.

It is temptirg to speculat tha one only nedl refine the mesh to help the operato split technique
overcone itsdifficulty. The resulsin Figure 8 demostrat clearly that we are nowhere close to the
convergene limit of the Strang-tyg splitting for this problem In fact, more problens are being
introduced through refinement.

The secoml problem is atwo region problen where the inner region isalow densiy, low pressure
gas and the oute region is amedium densiyy and mediun pressue gas Once again the regions
are bounded by eylindrical suface.Contours of this setup arewsh in Figure 9.

From Figures 10 ard 11, just before the main shok reachs the lower left corne of the plot, slight
hints of flattenirg appea in the Godurov solutiors along the diagona of the grid occurs The
effect is not as strorg as in the first problem However, color contou plots definitely reved the
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ELS SC

Figure 10. Problem 2 just before the main shodk reachs the origin. The top plot shows the
CLAWPACK result the lower left plot shows the correspondig Odys®y Godurov result and

the lower right plot slows the CE/SE result using = 2.0.

-16-
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el X

o aeO 2. A Lelaal
=T ot O3Sy > roT

Figure 11. Close in views in problan 2 just before a maja shod reachs the origin. The top
plot shows the Odys&y Godurov result while the bottom plot shows the CE/SE resut using

a=20.

-17-
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ELS SC

Figure 12. Problem 2 after the shodk has reboundedThe top plot shows the CLAWPACK
result the lower left plot shows the correspondig Odys®y Godurov result and the lowet

right plot stows the CE/SE result ugm = 2.0

-18-
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{t 3.51e 03.x,y} >{rho}

Figure 13. A clos=in view of problem 2 after the shod has reboundedThe top plot shows the
Odys®y Godurov result, while the bottom plot elvs the CE/SE result usirgg = 2.0.

-19-
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effect For the CE/SE method mesh imprinting may have causé one contou to be slightly flat-
tened. In this case, color contour plots onlgvsla slight asymmetry in the solution.

A shot while after the main shok bouncethe Godurov solutiorsin Figures 12 and 13 both show
significart deterioratio nea the origin. In this casegjetting occus on the coordinae axes nea the
origin, althoudh nat as pronouncd as in the three region problem As before the CE/SE solution
appears to beylindrically symmetric.

Thes resuls establi§ beyond adoult tha the genuiney unsplt CE/SE techniqe is quite power-
ful. Using asquae Cartesia grid, curved shocls are propagatd almog without distortion across
agrid tha at no point in the simulation matche the shae of the shockslt isals clea that very
seriots errors can arise due to the use of dimensionésplitting in solvers of nonlinea equations.
From our experience the evidence points to the dimensiona splitting errors becomirg visible
when the curature of a shock becomesda in a single zone of the grid.

Conclusions

Thecylindrically symmetric shocks that propagate on a Cartesian grid are not distorted when
the CE/SE safer is used. On the other hand, there is distortion when a Goduwethod is used.
In particula, there is a flattening of the shock abowtxhy diagonal X ard y are the two Carte-
sian coordinates). In addition, there are errors in the position of the shock aaragdty axes.

The CE/SE method is\eery promising ew numerical method. There has been some confu-
sion abou itsrelation to othe techniquesFirst, the methal for finding a non-dissipave solution
to the consesation lws is totally mw. However, the formulation of the dissipation terms does
draw upan othe methodsThus while CE/SE is nat afinite differene or afinite volume method,
finite differences are used to compute the dissipation terms that damp the ringing at the shocks.

The ramifications of our results are not limited to the case when a shock vetsreurAy
nonuniform fow, particularly one éveloping instabilities or tioulence, will be moréaithfully
followed by atechnique like the CE/SE method This methods genuiney unsplt characteis crit-
ical toitsaccuray in thetess presentd here and pointsclearly to its potentid in more demanding
flow problems.
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